NumPy is an actively used library created in 1995.

 24Years Old 7,430Users 0Jobs

### Example code from Wikipedia:

```>>> # # # Pure iterative Python # # #
>>> points = [[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]]
>>> qPoint = [4,5,3]
>>> minIdx = -1
>>> minDist = -1
>>> for idx, point in enumerate(points):  # iterate over all points
dist = sum([(dp-dq)**2 for dp,dq in zip(point,qPoint)])**0.5  # compute the euclidean distance for each point to q
if dist < minDist or minDist < 0:  # if necessary, update minimum distance and index of the corresponding point
minDist = dist
minIdx = idx

>>> print 'Nearest point to q: ', points[minIdx]
Nearest point to q:  [3, 4, 4]

>>> # # # Equivalent NumPy vectorization # # #
>>> import numpy as np
>>> points = np.array([[9,2,8],[4,7,2],[3,4,4],[5,6,9],[5,0,7],[8,2,7],[0,3,2],[7,3,0],[6,1,1],[2,9,6]])
>>> qPoint = np.array([4,5,3])
>>> minIdx = np.argmin(np.linalg.norm(points-qPoint,axis=1))  # compute all euclidean distances at once and return the index of the smallest one
>>> print 'Nearest point to q: ', points[minIdx]
Nearest point to q:  [3 4 4]```
Edit

Last updated February 11th, 2019