Agda is an actively used programming language created in 2007.

12Years Old 1,025Users 0Jobs

Example code from Linguist:

module NatCat where

open import Relation.Binary.PropositionalEquality

-- If you can show that a relation only ever has one inhabitant
-- you get the category laws for free
module
  EasyCategory
  (obj : Set)
  (_⟶_ : obj → obj → Set)
  (_∘_ : ∀ {x y z} → x ⟶ y → y ⟶ z → x ⟶ z)
  (id : ∀ x → x ⟶ x)
  (single-inhabitant : (x y : obj) (r s : x ⟶ y) → r ≡ s)
  where

  idʳ : ∀ x y (r : x ⟶ y) → r ∘ id y ≡ r
  idʳ x y r = single-inhabitant x y (r ∘ id y) r 

  idˡ : ∀ x y (r : x ⟶ y) → id x ∘ r ≡ r
  idˡ x y r = single-inhabitant x y (id x ∘ r) r

  ∘-assoc : ∀ w x y z (r : w ⟶ x) (s : x ⟶ y) (t : y ⟶ z) → (r ∘ s) ∘ t ≡ r ∘ (s ∘ t)
  ∘-assoc w x y z r s t = single-inhabitant w z ((r ∘ s) ∘ t) (r ∘ (s ∘ t))

open import Data.Nat

same : (x y : ℕ) (r s : x ≤ y) → r ≡ s
same .0 y z≤n z≤n = refl
same .(suc m) .(suc n) (s≤s {m} {n} r) (s≤s s) = cong s≤s (same m n r s)

≤-trans : ∀ x y z → x ≤ y → y ≤ z → x ≤ z
≤-trans .0 y z z≤n s = z≤n
≤-trans .(suc m) .(suc n) .(suc n₁) (s≤s {m} {n} r) (s≤s {.n} {n₁} s) = s≤s (≤-trans m n n₁ r s)

≤-refl : ∀ x → x ≤ x
≤-refl zero = z≤n
≤-refl (suc x) = s≤s (≤-refl x)

module Nat-EasyCategory = EasyCategory ℕ _≤_ (λ {x}{y}{z} → ≤-trans x y z) ≤-refl same

Example code from Wikipedia:

data _≤_ : ℕ → ℕ → Set where
   z≤n : {n : ℕ} → zero ≤ n
   s≤s : {n m : ℕ} → n ≤ m → suc n ≤ suc m
Edit

Last updated February 11th, 2019